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Abstract
We study a family of self-adjoint partial differential operators Hω, where ω is
a large parameter. In the simplest case each operator acts in L2((a, b) × R) as

Hω = −∂2
x + ω

(−∂2
y + Q(y)

)
,

under the boundary conditions of a certain type. We are interested in the
behaviour of the eigenvalues λn(Hω) as ω → ∞. Let �0 stand for the lowest
eigenvalue of the Schrödinger operator −∂2

y + Q(y) in L2(R). Under some
assumptions about the data we show that the numbers λn(Hω)−ω�0 converge
to the eigenvalues of the boundary value problem −ψ ′′ = λψ on (a, b), under
some boundary conditions induced by those for the original operators. Possible
generalizations are also discussed.

PACS numbers: 02.30.Hq, 02.60.Lj, 03.65.−w
Mathematics Subject Classification: 34B45, 35P15

1. Introduction

In the study of operator families depending on a parameter, an important question concerns
the limiting behaviour of their spectra. There are many different realizations of this general
problem. One of them arises when each operator, say Hω, is defined by a PDE acting on a set
(a domain, or a manifold, etc) of some space dimension, while the limiting behaviour of the
spectra σ(Hω) is determined by an operator H acting on a set of smaller dimension. The main
goal in this type of problems is to construct this operator H and to establish precisely, how its
spectrum determines the limiting behaviour of σ(Hω).

The problem investigated in the present paper is of this type. The operators studied act
on the set � × R, where � is a metric graph. The general formulation of the problem requires
some additional knowledge in graph theory and is given in section 2.3. Here we discuss a
particular case, when � reduces to the single segment [a, b] ⊂ R. Then Hω is the operator in
L2((a, b) × R) defined by the following differential expression and boundary conditions:
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Hω� = −� ′′
xx(x, y) + ω(−� ′′

yy(x, y) + Q(y)�(x, y)), x ∈ (a, b), y ∈ R; (1.1)

−� ′
x(a, y) = Fa(y)�(a, y), � ′

x(b, y) = Fb(y)�(a, y), y ∈ R. (1.2)

Here in the introduction we assume for simplicity that Q(y) → ∞ as |y| → ∞ and both Fa

and Fb are bounded.
For large values of ω the operator Hω can be accurately defined via its quadratic form.

Its spectrum is discrete, and we are interested in the behaviour of the eigenvalues λn(Hω) as
ω → ∞. It is easy to see that λn(Hω) → ∞ for each n. In order to provide more essential
information, let us denote by �0 the lowest eigenvalue and by U0(y) the corresponding
normalized eigenfunction of the Schrödinger operator −u′′ + Qu in L2(R). Then our main
result, theorem 2.3, states that for each n

λn(Hω) − ω�0 → λn(H), ω → ∞,

where H is the following operator in L2(a, b):

Hψ = −ψ ′′, −ψ ′(a) = Kaψ(a), ψ ′(b) = Kbψ(b), (1.3)

with the coefficients Ka,Kb given by

Ka =
∫

R

Fa(y)U 2
0 (y) dy, Kb =

∫
R

Fb(y)U 2
0 (y) dy. (1.4)

The origin of the problem lies in the model of an irreversible quantum graph, suggested
by Smilansky in [8]. Let us recall, see e.g. [5], that the term ‘quantum graph’ stands for the
system consisting of a metric graph � and a differential operator on it, usually the Laplacian.
In Smilansky model one studies the interaction between the quantum graph � and the harmonic
oscillator, attached to � by means of some specific boundary conditions. If � = [a, b], the
model reduces to the problem described above, with

Q(y) = y2, Fa(y) = Fb(y) = αy. (1.5)

Here α � 0 is an additional parameter (the coupling constant) which characterizes the strength
of interaction. For the case discussed we get Ka = Kb = 0, so that independently of the
value of α the operator H in (1.3) is just the (minus) Neumann Laplacian on (a, b). The latter
result (for arbitrary compact graphs) was obtained in [9] by using the decomposition into the
Fourier–Hermite series. The result of the present paper can be considered as a generalization
of theorem 2.2 in [9] to the case when a general Schrödinger operator, rather than just the
harmonic oscillator, is attached to the quantum graph. The boundary conditions which describe
the way of attaching also are of a wider class. The approach used in [9] does not apply, and
the proof requires other technical tools. It is based upon lemma 3.1 of a rather general nature.

The main new feature of the result obtained is dependence of the boundary conditions for
the limiting operator H on the functions involved in the boundary conditions for Hω.

Let us briefly describe the structure of the paper. In section 2 we introduce the family
Hω of the operators studied and formulate our main result, theorem 2.3. Its proof, given in
section 4, is based on lemma 3.1, presented in section 3. In the final section 5 we complement
and discuss theorem 2.3. In particular, we compare it with some results on the spectrum of
the Laplacian in thin domains.

Here we introduce some necessary notation from the operator theory. Let T be a self-
adjoint, bounded below operator in a separable Hilbert space H. It is convenient to define
such operator via its quadratic form t[f ]. The corresponding sesqui-linear form is denoted by
t[f1, f2], so that t[f, f ] = t[f ].

The spectrum and the essential spectrum of T are denoted by σ(T) and by σess(T),
respectively. The spectrum below the point min σess(T) is either empty, or consists of a finite
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or countable set of eigenvalues {λn(T)}. It is common to enumerate them in the increasing
order, according to their multiplicities. Given a real number s, we denote

N (s; T) = dim ET(−∞, s)H,

where ET stands for the spectral measure of T.

2. Description of the problem

2.1. Laplacian on a metric graph

Let � be a compact and connected metric graph, with the set of vertices V and the set of edges
E . For simplicity, we assume that the graph has no cycles. The length of an edge e is denoted
by |e|, and we write

ε = ε(�) = min
e∈E

|e|, M(�) = #V.

Let us identify each edge incident to v (notation e ∼ v) with the segment [0, |e|] in such
a way that the point t = 0 corresponds to the vertex v. Then for any function ψ on the graph,
which is smooth enough on each such edge, the expression

[ψ ′](v) =
∑
e∼v

(ψ |e)′(0)

is well defined. It plays an important role in the theory of the Laplacian on graphs.
The Sobolev space H 1(�) is defined as the space of all continuous functions ψ on the

graph �, such that the restriction of ψ to each edge e lies in H 1(e). The canonical norm in
H 1(�) is given by

‖ψ‖2
H 1(�) =

∫
�

(|ψ ′|2 + |ψ |2) dx.

With an arbitrary set of M(�) real numbers, K = {Kv}v∈V , we associate the quadratic
form

dK[ψ] =
∫

�

|ψ ′
x |2 dx +

∑
v∈V

Kv|ψ(v)|2, ψ ∈ H 1(�), (2.1)

and the corresponding self-adjoint operator −�K in L2(�). Due to the compactness of �, the
spectrum of −�K is discrete.

Independently of the choice of K, the operator �K acts as �Kψ = ψ ′′ on each edge. A
function ψ ∈ H 1(�) lies in its operator domain Dom(�K) if and only if it belongs to the
Sobolev space H 2(e) on each edge and satisfies the condition

[ψ ′](v) = Kvψ(v) (2.2)

at each vertex. This description of Dom(�K) can be easily derived from the variational
definition of the operator by using the Euler–Lagrange equations. The equality (2.2) with
Kv = 0 is known as the Kirchhoff condition. The Laplacian under the Kirchhoff condition at
each vertex v ∈ V is nothing but the Neumann Laplacian �N .

2.2. The operator AQ

Another initial object is the Schrödinger operator AQu = −u′′ + Qu in L2(R), where the
potential Q is supposed measurable and non-negative. The operator AQ can be accurately
defined via its quadratic form

aQ[u] =
∫

R

(|u′|2 + Q(y)|u|2) dy, u ∈ Dom(aQ) := H 1(R) ∩ L2
Q(R).
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We formulate our conditions on the potential Q in an implicit form, in terms of the spectral
properties of AQ.

Condition 2.1. The potential Q is non-negative, the operator AQ is positive definite in L2(R)

and the bottom �0 of its spectrum is an isolated eigenvalue.

It is well known that this eigenvalue is simple and that the corresponding normalized
eigenfunction U0(y) can be taken positive. We denote by �′ the bottom of the rest of
the spectrum:

�′ = min{λ ∈ σ(AQ) : λ > �0}.
We do not impose any further conditions on the potential. Our assumptions can be summarized
as follows:

AQU0 = �0U0, U0 > 0,

∫
R

|U0|2 dy = 1, (2.3)

aQ[u] � �′
∫

R

|u|2 dy ∀u ∈ Dom(aQ) :
∫

R

uU0 dy = 0, �′ > �0 > 0. (2.4)

2.3. The operator Hω

Now we are in a position to introduce the family of operators we study in this paper. Consider
the set � × R, with the co-ordinates x ∈ �, y ∈ R. In the usual way, the Hilbert space
H = L2(� × R) can be identified with the tensor product,

H = L2(� × R) = L2(�) ⊗ L2(R). (2.5)

We are interested in the operator Hω in H, defined by the differential expression

Hω� = −� ′′
xx + ω(−� ′′

yy + Q(y)�), x /∈ V (2.6)

and the boundary (matching) conditions

[� ′
x](v, y) = Fv(y)�(v, y), v ∈ V, y ∈ R, (2.7)

cf (1.1), (1.2). The potential Q is the same as in section 2.2 and ω > 0 is a parameter; our
assumptions about the functions Fv , which define the matching conditions at the vertices, will
be specified later.

The most convenient way to rigorously define the operator Hω uses its quadratic form hω.
Namely, we set

hω[�] = hω;0[�] + b[�], (2.8)

where

hω;0[�] =
∫

�×R

(|� ′
x |2 + ω(|� ′

y |2 + Q(y)|�|2)) dx dy (2.9)

and

b[�] =
∑
v∈V

bv[�], bv[�] =
∫

R

Fv(y)|�(v, y)|2 dy. (2.10)

The quadratic form hω;0 in (2.9) is defined on the natural domain D := H 1(�) ⊗ Dom(aQ),
which does not depend on ω > 0. This quadratic form is non-negative and evidently closed in
H. In part 1 of theorem 2.3, we will show that for the large values of ω the quadratic form hω
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is bounded below and closed on D. Therefore, it defines a self-adjoint operator in H which by
definition is taken as Hω.

The operator Hω;0, associated with the quadratic form (2.9), admits separation of variables:
with respect to the tensor realization (2.5) of H, we have

Hω;0 = −�N ⊗ I + ωI ⊗ AQ,

where �N is the Neumann Laplacian on �; see a description of this operator at the end of
section 2.1. It follows that the spectrum of Hω,0 is the superposition of the sets
λn(−�N) + ωσ(AQ). In particular, the spectrum of Hω;0 below ω�′ is finite, it consists
of the eigenvalues

λn(Hω;0) = λn(−�N) + ω�0, n � N (ω(�′ − �0);−�N).

Hence,

N (s; Hω;0) = N (s; AQ), ∀ s � ω(�′ − �0).

The number N (ω(�′ −�0);−�N) indefinitely grows together with ω, and it is clear that

lim
ω→∞(λn(Hω;0) − ω�0) = λn(−�N), ∀ n � 0. (2.11)

Our goal is to study the behaviour of the eigenvalues λn(Hω) as ω → ∞. We shall show
that a formula similar to (2.11) takes place, but with an important difference: the limiting
eigenvalues on the right-hand side correspond not to the Neumann Laplacian �N , but to the
operator �K where

K = {Kv}, Kv =
∫

R

Fv(y)U 2
0 (y) dy, ∀ v ∈ V. (2.12)

The conditions on the functions Fv should guarantee finiteness of Kv .

Lemma 2.2. Let Q be as above, and let the functions Fv be measurable and satisfy the
inequality

|Fv(y)| � C(1 +
√

Q(y)), C > 0, ∀ v ∈ V. (2.13)

Then the numbers Kv given by (2.12) meet the estimate

|Kv| � C(1 +
√

�0).

Proof. We have∫
R

Q(y)|U0(y)|2 dy � aQ[U0] = �0,

∫
R

|U0(y)|2 dy = 1.

Hence, by the Cauchy–Schwartz inequality,∫
R

(1 +
√

Q(y))|U0(y)|2 dy � 1 +
√

�0.

The desired result immediately follows. �

2.4. Main result

Theorem 2.3. Let condition 2.1 be satisfied, the functions Fv be measurable and real-valued
and the inequalities (2.13) be fulfilled. Then

(1) For ω large enough the quadratic form hω given by (2.8) is bounded below and closed
on D.
Let Hω stand for the corresponding self-adjoint operator in H.
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(2) There exists a function s(ω), such that s(ω) → ∞ as ω → ∞ and

N (s(ω); Hω) < ∞ for each ω < ∞,

N (s(ω); Hω) → ∞ as ω → ∞.
(2.14)

(3) For any n ∈ N we have

λn(Hω) − ω�0 → λn(−�K) as ω → ∞, (2.15)

where the family K is given by (2.12).

We reduce the theorem to a technical lemma which is stated and proved in the following
section.

3. The main lemma

The lemma below describes the central construction used for the proof of theorem 2.3. The
assumptions about the objects involved reflect the main features of the problem we are dealing
with.

3.1. The quadratic form gω[�]

Let H be a separable Hilbert space and gω[�] be a positive definite, closed quadratic form in
H, depending on a parameter ω > 0. We suppose that the domain V = Dom[gω] is dense in
H and does not depend on ω. Below we list our assumptions about the family of the quadratic
forms gω and the corresponding self-adjoint operators Gω in H.

(g1) For any ω > 0 the quadratic form gω is diagonalized by an orthogonal decomposition

H = H◦ ⊕ H̃, dimH◦ = ∞, (3.1)

which does not depend on ω.
In the following the elements from H◦ and H̃ are standardly denoted by �◦ and �̃

respectively, and P◦, P̃ stand for the orthogonal projections in H onto these subspaces.
(g2) The part of gω in the subspace H◦ is independent of ω:

gω[�◦] =: g◦[�◦], ∀�◦ ∈ V ∩ H◦,

and the self-adjoint operator G◦ in H◦, associated with g◦, has discrete spectrum.
(g3) The lower bound of the quadratic form gω on H̃ indefinitely grows together with ω. More

exactly, there exists a constant ν > 0, such that

gω[�̃] � νω‖�̃‖2
H, ∀ �̃ ∈ V ∩ H̃.

Let G̃ω stand for the self-adjoint operator in H̃, generated by the quadratic form gω

restricted to H̃. Our assumptions imply that

σ(Gω) = σ(G◦) ∪ σ(G̃ω).

It follows that the spectra of G◦ and Gω, lying below the point νω, coincide. In particular,

N (s; Gω) = N (s; G◦), ∀ s � νω. (3.2)

3.2. The quadratic form m[�]

Let m[�] be another real-valued quadratic form (not depending on ω) in H defined on the
same domain V. Our first assumption about m is this:
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(m1) The quadratic form m vanishes on H◦:

m[�◦] = 0, ∀�◦ ∈ V ∩ H◦.

The second assumption is formulated in terms of a non-negative majorant of m, i.e. a
non-negative quadratic form m̂ such that

|m[�]| � m̂[�], ∀� ∈ V. (3.3)

(m2) There are a constant C1 � 0 and a function ε(ω), vanishing as ω → ∞, such that

m̂[�◦] � C1g◦[�◦], ∀�◦ ∈ V ∩ H◦, (3.4)

m̂[�̃] � ε(ω)gω[�̃], ∀ �̃ ∈ V ∩ H̃. (3.5)

We do not assume that the decomposition (3.1) diagonalizes either of the quadratic forms
m, m̂.

Lemma 3.1. Let the assumptions (g1)–(g3) and (m1), (m2) be satisfied. Then

(1) For ω large enough the quadratic form

gm
ω [�] := gω[�] + m[�], � ∈ V,

is bounded below and closed in H.
Let Gm

ω stand for the corresponding self-adjoint operator.
(2) There exists a function s1(ω), such that s1(ω) → ∞ as ω → ∞ and

N
(
s1(ω); Gm

ω

)
< ∞ for each ω < ∞,

N
(
s1(ω); Gm

ω

) → ∞ as ω → ∞.
(3.6)

(3) For any n ∈ N we have

λn

(
Gm

ω

) → λn(G◦) as ω → ∞. (3.7)

Proof. (1) Let � = �◦ + �̃, then by the assumption (m1)

gm
ω [�] = gω[�] + m[�̃] + 2 Re m[�◦, �̃]. (3.8)

It follows from the ‘polarization identity’

4m[�◦, �̃] =
3∑

k=0

ikm[�◦ + ik�̃]

and the property of m[�] to be real-valued that

4 Re m[�◦, �̃] = m[�◦ + �̃] − m[�◦ − �̃].

Hence, by (3.3)

2|Re m[�◦, �̃]| � m̂[�◦] + m̂[�̃]. (3.9)

Choosing an arbitrary δ > 0 and replacing in (3.9) �◦ by δ1/2�◦ and �̃ by δ−1/2�̃, we
conclude from (3.8) that∣∣gm

ω [�] − gω[�]
∣∣ � m̂[�̃] + δm̂[�◦] + δ−1m̂[�̃].

Let now ω be large enough, so that ε(ω) � 1. Taking δ = √
ε(ω), we find that∣∣gm

ω [�] − gω[�]
∣∣ �

√
ε(ω)

(
(2 + C1)gm

ω [�◦] + gω[�̃]
)

� (2 + C1)
√

ε(ω)gω[�]. (3.10)
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If µ(ω) := (2+C1)
√

ε(ω) < 1, this inequality yields (see, e.g., lemma 1.1 in [1]) that together
with gω, the quadratic form gm

ω is bounded below and closed on d. This completes the proof
of (1). �

(2) From (3.10) we conclude that

(1 − µ(ω))Gω � Gm
ω � (1 + µ(ω))Gω.

Therefore, for any s > 0

N
(

s

1 + µ(ω)
; Gω

)
� N

(
s; Gm

ω

)
� N

(
s

1 − µ(ω)
; Gω

)
. (3.11)

If s < νω(1 − µ(ω)), then by (3.2) the operator Gω in the latter inequality can be replaced by
G◦. Take, for instance,

s1(ω) = νω

2
(1 − µ(ω)).

Then the quantity N
(
s1(ω); Gm

ω

)
is finite and tends to infinity together with ω (since

µ(ω) → 0). This proves (2).
From (3.11) the statement (3) of lemma follows immediately. �

4. Proof of theorem 2.4.3

We rely upon lemma 3.1. So, we have to define the appropriate quadratic forms gω, m and m̂
and then to check the conditions (g1)–(g3) and (m1), (m2).

Our Hilbert space is H = L2(� × R), and all the quadratic forms involved are defined on
the domain D = H 1(�)⊗Dom(aQ). As in section 2.2, U0(y) stands for the leading (positive),
normalized eigenfunction of the operator AQ, see (2.3). We define the subspace H◦ as

H◦ = {�(x, y) = ψ(x)U0(y) : ψ ∈ L2(�)} (4.1)

and the subspace H̃ as its orthogonal complement in H. The orthogonal projection onto H◦ is
given by

(P◦�)(x, y) = ψ(x)U0(y), ψ(x) =
∫

R

�(x, y)U0(y) dy.

We define the quadratic form gω as

gω[�] = hω;0[�] − (ω�0 − R)‖�‖2 + b[P◦�]. (4.2)

Here hω;0 and b are the quadratic forms (2.9) and (2.10), R is a non-negative constant to be
specified later and ‖�‖ = ‖�‖H. Since U0 is an eigenfunction of AQ, the decomposition
H = H◦ ⊕ H̃ diagonalizes the quadratic form gω.

In particular,

gω[�◦] =
∫

�

(|ψ ′
x |2 + R|ψ |2) dx +

∑
v∈V

Kv|ψ(v)|2 = dK[ψ] + R‖ψ‖2
L2(�) (4.3)

(where dK is the quadratic form defined in (2.1), with the coefficients Kv from (2.12)) and

gω[�̃] =
∫

�×R

((|�̃ ′
x |2 + R|�̃|2) + ω(|�̃ ′

y |2 + (Q(y) − �0)|�̃|2)) dx dy. (4.4)

The choice of R in (4.2) has to guarantee positive definiteness of the quadratic form in
(4.3). Due to the continuous imbedding of the Sobolev space H 1(�) in C(�), such choice is
always possible. It depends on the functions Fv involved in (2.10).
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For any u ∈ Dom(aQ), orthogonal to U0, the inequality (2.4) is satisfied. It follows that
for any �̃ ∈ D ∩ H̃ we have

gω[�̃] � (�′ − �0)‖�̃‖2,

and by (4.2)

gω[�] = gω[�◦] + gω[�̃] � dK[�◦] + ω(�′ − �0)‖�̃‖2. (4.5)

This shows that the quadratic form gω is positive definite. It is evidently closed. Hence, the
condition (g1) is satisfied. The equality (4.3) implies that the condition (g2) is satisfied too.
The operator G◦ acts as

(G◦�◦)(x, y) = (−�Kψ(x) + Rψ(x))U0(y).

By (4.5), the condition (g3) is fulfilled with ν = �′ − �0.
Now we introduce the quadratic form m:

m[�] = b[�] − b[P◦�]. (4.6)

The condition (m1) is satisfied automatically. Note that (4.2) and (4.6) yield

gm
ω [�] = gω[�] + m[�] = hω[�] − (ω�0 − R)‖�‖2

and therefore,

Gm
ω = Hω − (ω�0 − R)I. (4.7)

Take

m̂[�] = C2

∑
v∈V(�)

∫
R

(1 +
√

Q(y))|�(v, y)|2 dy.

Due to the assumption (2.13), we have |b[�]| � m̂[�] if C2 � C. Further, let � ∈ D and
ψ(x) = ∫

R
�(x, y)U0(y) dy. Then for any x ∈ �

|ψ(x)|2 �
∫

R

|�(x, y)|2 dy �
∫

R

(1 +
√

Q(y))|�(x, y)|2 dy.

Since

b[P◦�] =
∑

v∈V(�)

Kv|ψ(v)|2

and all the Kv are estimated by lemma 2.2; the inequality (3.3), with an appropriate choice of
C2, is satisfied.

It remains to verify conditions (3.4) and (3.5). The first is easy. Indeed, if � = �◦ is as
in (4.1), then

m̂[�◦] = C2

∑
v∈V

|ψ(v)|2
∫

R

(1 +
√

Q(y))|U0(y)|2 dy.

Again, the integrals are finite and the factors |ψ(v)|2 are controlled by ‖ψ‖H 1(�), and hence,
by the quadratic form g◦[�◦].
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4.1. Verifying (3.5)

This requires some preliminary work. We shall rely upon the following elementary inequality
which was exploited earlier in [10] where it was presented without proof. For the reader’s
convenience, we prove it here. Another proof can be found in [9].

Lemma 4.1. Let 0 < L < ∞. For any function w(x) from the Sobolev space H 1(0, L) and
any number γ > 0 the inequality is satisfied:

γ |w(0)|2 � coth(γL)

∫ L

0
(|w′

x |2 + γ 2|w|2) dx. (4.8)

Proof. By scaling, we reduce the problem to its particular case γ = 1, then the integral in
(4.8) is nothing but the standard metric form ‖w‖2

H 1 of the space H 1(0, L). Let (w1, w2)H 1

stand for the corresponding scalar product.
Let w0(x) = cosh(L − x), then for any w1 ∈ H 1(0, L) we get by integrating by parts

(w1, w0)H 1 =
∫ L

0
(w′

1w
′
0 + w1w0) dx = w1(0) sinh L.

Hence,

(w1, w0)H 1 = 0 ⇐⇒ w1(0) = 0.

Any function w ∈ H 1(0, L) can be represented as w = Cw0 + w1, where (w1, w0)H 1 = 0.
Then w(0) = Cw0(0) = C cosh L and

‖w‖2
H 1 � |C|2‖w0‖2

H 1 = |C|2 sinh(2L)/2 = |w(0)|2 tanh L,

whence the result. �

Recall that coth s, s > 0 is a decreasing function. By applying (4.8) to each vertex v ∈ V and
roughening the estimate, we conclude that

γ |w(v)|2 � coth(γ ε)

∫
�

(|w′|2 + γ 2|w|2) dx, ∀ v ∈ V. (4.9)

By (4.9), we have for all v ∈ V and for a.a. y ∈ R:√
ωQ(y) + R|�̃(v, y)|2 � coth(ε

√
ωQ(y) + R)

×
∫

�

(|�̃ ′
x(x, y)|2 + (ωQ(y) + R)|�̃(x, y)|2) dx,

whence√
ωQ(y)|�̃(v, y)|2 � coth(ε

√
R)

∫
�

(|�̃ ′
x(x, y)|2 + (ωQ(y) + R)|�̃(x, y)|2) dx.

Integrating this inequality over y ∈ R and increasing the right-hand side, we obtain

√
ω

∫
R

√
Q(y)|�̃(v, y)|2 dy � coth(ε

√
R)

×
∫

�×R

(|�̃ ′
x |2 + R|�̃|2 + ω(|�̃ ′

y |2 + Q(y)|�̃|2)) dx dy. (4.10)

Now we use the inequality (2.4) in an equivalent form,∫
R

(|u′
y |2 + Q(y)|u|2) dy � �′

�′ − �0

∫
R

(|u′
y |2 + (Q(y) − �0)|u|2) dy.
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Applying it to the function u(·) = �̃(x, ·), we conclude from (4.10) that∫
R

√
ωQ(y)|�̃(v, y)|2 dy � �′

�′ − �0
coth(ε

√
R)gω[�̃]. (4.11)

We also have to estimate the integral
∫

R
|�̃(v, y)|2 dy. To this end, we first of all derive from

(2.4) and (4.4) that∫
�×R

(|�̃ ′
x |2 + ω(�′ − �0)|�̃|2) dx dy � gω[�̃]. (4.12)

It follows from here and (4.9) that√
ω(�′ − �0)

∫
R

|�̃(v, y)|2 dy � gω[�̃].

The desired inequality (3.5), with

ε(ω) = M(�)ω−1/2

(
�′

�′ − �0
coth(ε

√
R) +

1√
�′ − �0

)
,

is a direct consequence of (4.11) and (4.12).

4.2. End of proof

It follows from (4.7) that the statement (1) in theorem 2.3 is an immediate consequence of the
statement (1) in lemma 3.1. The same equality (4.7) yields that

N (s; Hω) = N
(
s − (ω�0 − R); Gm

ω

)
.

Hence, (2.14) follows from (3.6), with

s(ω) = s1(ω) + (ω�0 − R).

Finally, (2.15) follows from (3.7).

5. Complements and general discussion

5.1. Some additional results

(1) Suppose that the functions Fv in (2.10) are such that∫
R

Fv(y)U 2
0 (y) dy = 0, ∀ v ∈ V. (5.1)

Then by (2.13) we get Kv = 0, so that the limiting behaviour of the eigenvalues λn(Hω) is
determined by the Neumann Laplacian on �: relation (2.15) takes the form

λn(Hω) − ω�0 → λn(−�N ) as ω → ∞. (5.2)

Moreover, it is clear that condition (5.1) is not only sufficient, but also necessary for (5.2) to
be satisfied.

In the paper [9] a special case of the operator Hω was considered, with Q(y) = y2 and
Fv(y) = αy for all v ∈ V . Here α > 0 is the coupling constant, cf equation (1.5) in the
introduction. To indicate the dependence of α in our notation, below we denote the operator
by Hω,α .

In the case discussed condition (5.1) is evidently fulfilled, so that theorem 2.2 in [9]
follows from our theorem 2.3. The proof in [9] is easier than here, it uses expansions into the
Fourier–Hermite series. This approach allows one to carry out a detailed spectral analysis of
the operators Hω,α for ω fixed and an arbitrary α > 0. In this connection, see the paper [11]
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which presents such analysis for the case when Q(y) = y2, Fv0(y) = αy for a selected vertex
v, and Fv(y) ≡ 0 for all v �= v0.

(2) In the description of the problem as in section 2.3 it is not necessary to take the
Neumann Laplacian as the initial operator on �. It is possible to replace it by the operator
�K0 , with an arbitrary family K0 = {Kv,0}v∈V of real numbers. In other words, the quadratic
form hω;0 in (2.9) can be replaced by

hω;0,K0 [�] = hω;0[�] +
∑
v∈V

Kv,0

∫
R

|�(v, y)|2 dy.

But this is only a formal generalization of the original problem: the same can be achieved by
replacing the functions Fv(y) by Fv(y) + Kv,0.

(3) The suggested scheme also applies when the operator attached to the quantum graph
acts in L2 on the half line, or on a finite interval. In particular, instead of the operator AQ as
in section 2.2 one can consider the Sturm–Liuville operator on the interval (−l, l), with the
Dirichlet boundary conditions at y = ±l. This means that the differential expression in (2.6)
is considered for x ∈ �, y ∈ (−l, l), under the conditions (2.7) and �(v,±l) = 0. As before,
the quadratic form hω is given by (2.8), with the obvious changes in (2.9) and (2.10).

An analogue of theorem 2.3 remains valid for this case without any changes. In particular,
if Q(y) ≡ 0 (the infinite potential barrier at y = ±l), then �0 = π2

4l2 and U0(y) = l−1/2 cos πx
2l

.
This allows one to write the expression for the coefficients Kv in an explicit form.

(4) We come to another generalization of theorem 2.3 by replacing in (2.6) the term −� ′′
xx

by −� ′′
xx + V (x), with a real-valued, bounded potential V . Clearly, the operator −�K on the

right-hand side of (2.15) in theorem 2.3 has to be replaced by −�K + V .
In the latter result the compactness assumption for � can be removed, it is enough to

require that M(�) < ∞ and V (x) is bounded on compact subsets of � and tends to infinity
as |x| → ∞ along the infinite edges. Then the spectrum of −� + V is discrete and the result
remains valid. The proof consists in applying lemma 3.1, and only some minor changes in the
argument of section 4 are necessary.

5.2. On the spectrum of the Laplacian in thin domains

There is some resemblance between theorem 2.3 and the results on the spectrum of the Dirichlet
Laplacian �D in a thin neighbourhood of a smooth simple planar curve L. Let us assume for
simplicity that L is closed. Then for any d > 0 the set

�d = {(x, y) ∈ R
2 : dist((x, y),L) < d}

is a bounded planar domain, so that the spectrum of −�D in �d is discrete. Let λn(d) be
its nth eigenvalue. When d → 0, they escape to infinity in such a way that under some mild
smoothness conditions on the curvature of L one has

λn(d) − π2

4d2
→ λn(H), H = − d2

ds2
− γ 2(s)

4
, (5.3)

where s is the arc length coordinate on L and γ (s) is the curvature.
This result goes back to the paper [3]. In fact, the case of a non-compact curve was

analysed there, when the spectra of the operators involved are not discrete, so that some
changes in the formulation are necessary. The proof of (5.3) is actually the same as for the
corresponding statement in [3], so that the result should be considered as known. However, it
seems to be never published in an explicit form. I am grateful to P Exner for this information.

We see that both in this problem and in our problem (2.6)–(2.7) all the eigenvalues escape
to infinity. After the subtraction of an appropriate growing term, the eigenvalues converge to
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those of an explicitly given operator. However, this limiting operator does not coincide with
the ‘most natural candidate’, namely with the Neumann Laplacian on L, or respectively on �.
Instead, it is the Sturm–Liuville operator with the curvature-induced term, as in (5.3), or the
Laplacian with other conditions at the vertices, as in (1.4).

Note that for the Neumann Laplacian in �d the result is easier. Namely, the entire
spectrum does not escape to infinity, so that there is no need to subtract any growing term. The
nth eigenvalue of the Laplacian tends to λn(H), where H is just the operator −d2/ds2 along
the curve. Moreover, the result extends to the case when instead of a curve one is dealing with
the planar graph, see [6]. An extension to a class of non-compact graphs is also possible, see
[12].

Many results of a similar nature can be found in the survey paper [5], see also [2, 4, 7].
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